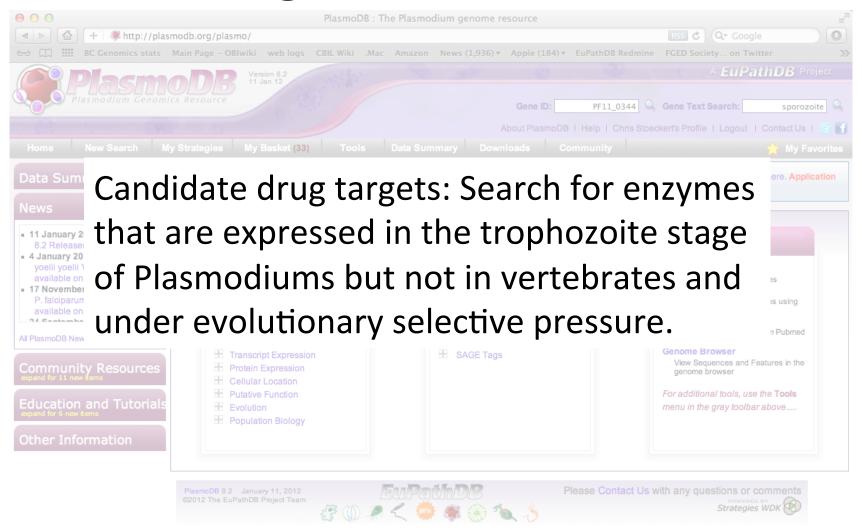
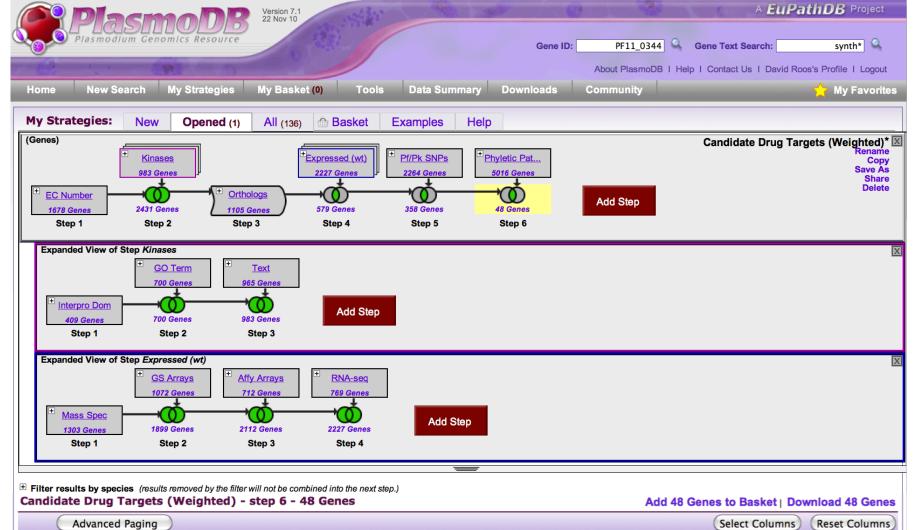

Issues in Infectious Disease Genomics

Chris Stoeckert
University of Pennsylvania
NIAID EuPathDB Bioinformatics
Resource Center

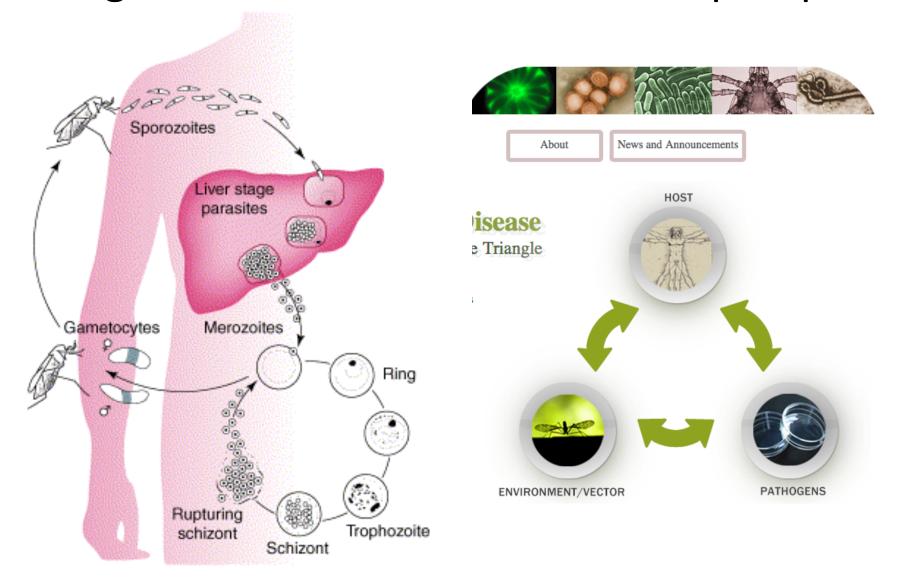

http://eupathdb.org/eupathdb/



Data mining for malaria treatments

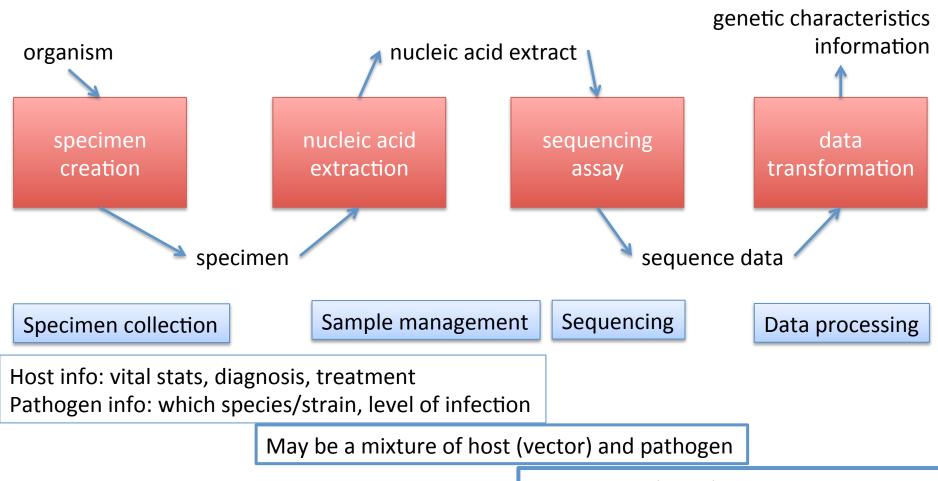
Data mining for malaria treatments

🔷 Gene Id	🕏 Genomic Location 🔇	Product Description ■	🔷 Weight 🍪
PFI0755c	Pf3D7_09: 650,576 - 654,832 (-)	6-phosphofructokinase	60
PF08_0132	Pf3D7_08: 147,210 - 151,403 (+)	glutamate dehydrogenase, putative	60
PFD0670c	Pf3D7_04: 626,769 - 627,785 (-)	lysine decarboxylase-like protein, putative	60
PFE0660c	Pf3D7_05: 569,180 - 569,917 (-)	purine nucleoside phosphorylase	60
PF13_0257	Pf3D7_13: 1,968,221 - 1,970,812 (-)	glutamatetRNA ligase, putative	50
PF14_0541	Pf3D7_14: 2,329,869 - 2,332,022 (-)	V-type H()-translocating pyrophosphatase, putative	50
MAL7P1.19	Pf3D7_07: 271,404 - 284,452 (-)	ubiquitin transferase, putative	40
PF11_0086	Pf3D7_11: 301,283 - 311,287 (-)	MIF4G domain containing protein	40
PF14_0649	Pf3D7_14: 2,786,244 - 2,794,259 (-)	conserved Plasmodium protein, unknown function	40
PF14_0614	Pf3D7_14: 2,619,614 - 2,624,122 (+)	phosphatase, putative	40
PF14_0063	Pf3D7_14: 239,747 - 243,772 (+)	ATP-dependent Clp protease, putative	40


Strategies provides a way to dynamically create a data mining workflow.

- Can save your strategies and share providing a reproducible record of your data mining
- Also used by TBDB, FungiDB, Schistodb (beta version), and Beta Cell Genomics
- http://code.google.com/p/strategies-wdk/
- Fischer et al. Database (Oxford) 2011:bar027
- Although powerful, strategies are limited by the attributes that can be queried.
 - Datasets are focused on quantifiable aspects with minimal information about the context (meta-data).
 - No common semantics for the meta-data in place requiring exploring individual datasets for details

EuPathDB and the NIAID BRCs



Infectious disease investigations requires integration of information on multiple species

A Genome Sequencing Center (GSC)-Bioinformatics Resource Center (BRC) Investigation (Project)

Types of studies – drugs, vaccines, epidemiology

How to correlate phenotypes, SNPs, expression between host and pathogen?

Host-pathogen datasets in EuPathB

- Focus on parasite with host as experimental factor
 - find isolates based on host, location, source, ...
 - HTS SNPs from field isolates (Broad, Sanger)
 - compare expression profiles of pathogens based on host characteristics
 - NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children. J. Clin. Invest. 2011;121(3):1119-29 Vignali et al.
- Need host-pathogen genomic comparisons
 - correlate expression between host and pathogen
 - A comprehensive catalog of the T. gondii & N. caninum parasite & infected host cell transcriptome & proteome. Brian Gregory (Univ. Pennsylvania) and Jonathan Wastling (Univ. Liverpool).

NIAID GSC-BRC Meta-data Working Group

- Standardized Metadata for Human Pathogen/Vector Genomic Sequences
- Bruce Birren^{2,b}, Laura Brinkac^{1,a}, Vincent Bruno^{3,c}, Elizabeth Caler^{1,a}, Ishwar Chandramouliswaran^{1,a}, Sinéad Chapman^{2,b}, Frank Collins^{8,h}, Christina Cuomo^{2,b}, Joana Carneiro Da Silva^{3,c}, Valentina Di Francesco⁴, Vivien Dugan^{1,a}, Scott Emrich^{8,h}, Mark Eppinger^{3,c}, Michael Feldgarden^{2,b}, Claire Fraser^{3,c}, W. Florian Fricke^{3,c}, Maria Giovanni⁴, Gloria Giraldo-Calderon^{8,h}, Omar S. Harb^{5,g}, Matt Henn^{2,b}, Erin Hine^{3,c}, Julie Dunning Hotopp^{3,c}, Jessica C. Kissinger^{6,g}, Eun Mi Lee⁴, Punam Mathur⁴, Garry Myers^{3,c}, Emmanuel Mongodin^{3,c}, Cheryl Murphy^{2,b}, Dan Neafsey^{2,b}, Karen Nelson^{1,a}, Ruchi Newman^{2,b}, William Nierman^{1,a}, Brett E. Pickett^{1,d,e}, Julia Puzak⁴, David Rasko^{3,c}, David S. Roos^{5,g}, Lisa Sadzewica^{3,c}, Richard H. Scheuermann^{1,d,e}, Lynn M. Schriml^{3,c}, Bruno Sobral^{7,f}, Tim Stockwell^{1,a}, Chris Stoeckert^{5,g}, Dan Sullivan^{7,f}, Luke Tallon^{3,c}, Herve Tettelin^{3,c}, Doyle V. Ward^{2,b}, David Wentworth^{1,a}, Owen White^{3,c}, Rebecca Will^{7,f}, Jennifer Wortman^{2,b}, Alison Yao⁴, Jie Zheng^{5,g}

¹J. Craig Venter Institute, Rockville, MD and San Diego, CA

²Broad Institute, Cambridge, MA

³Insitute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD

⁴National Institute of Allergy and Infectious Diseases, Rockville, MD

⁵University of Pennsylvania, Philadelphia, PA

⁶University of Georgia, Athens, GA

⁷Cyberinfrastructure Division, Virginia Bioinformatics Institute, Blacksburg, VA

⁸University of Notre Dame, South Bend, IN

^aJ. Craig Venter Institute Genome Sequencing Center for Infectious Diseases

^bBroad Institute Genome Sequencing Center for Infectious Diseases

^cInstitute for Genome Sciences Genome Sequencing Center for Infectious Diseases

dInfluenza Research Database Bioinformatics Resource Center

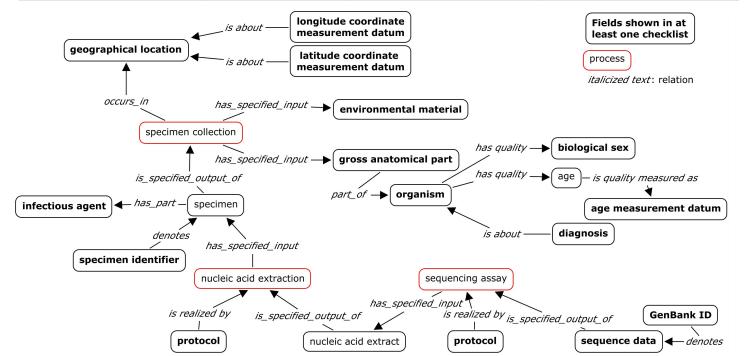
^eVirus Pathogen Resource Bioinformatics Resource Center

^fPATRIC Bioinformatics Resource Center

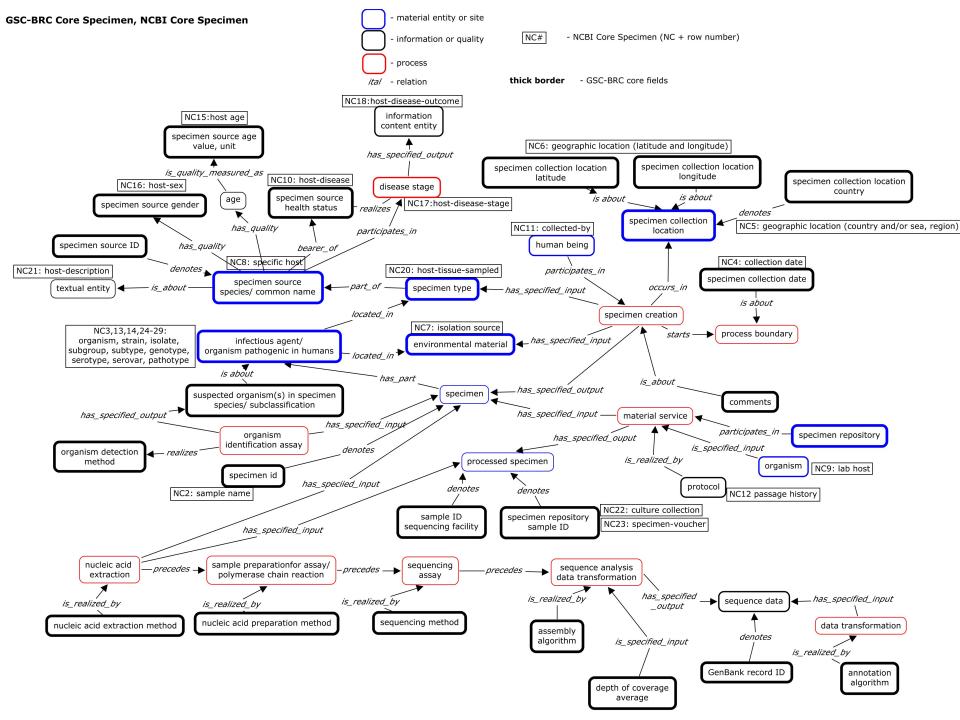
gEuPathDB Bioinformatics Resource Center

^hVectorBase Bioinformatics Resource Center

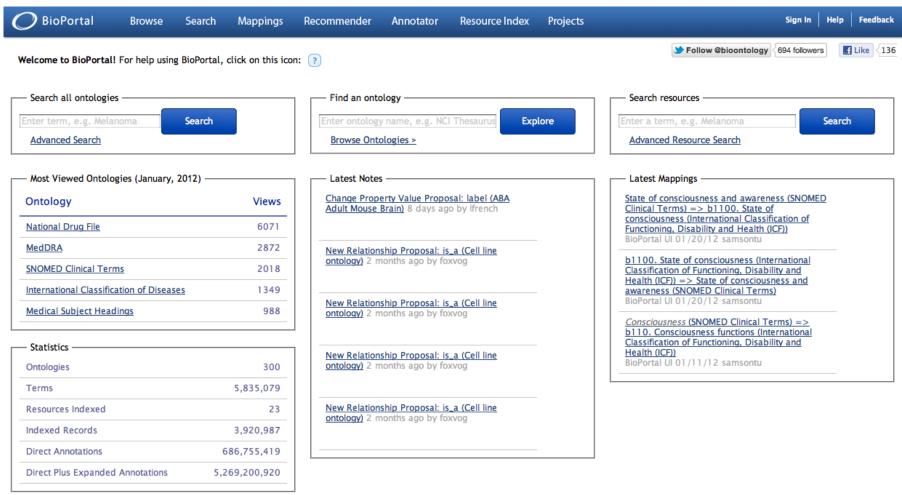
NIAID GSC-BRC Meta-data Working Group


- Goal of group: development of an approach for the capture of standardized human pathogen/vector sequencing metadata designed to support epidemiologic and genotype-phenotype association studies
- Richard Scheuermann presented on this at the FGED Boston 2012 meeting
- Current status: The standard includes data fields about:
 - project leadership and support
 - the organism/environmental source of the pathogen/vector specimen
 - spatial-temporal information about the specimen isolation event
 - phenotypic characteristics of the pathogen/vector isolated
 - information about the sequencing and data processing methodologies used
 - information about the quality and coverage of the resulting sequence
 For each data field, recommendations for preferred vocabularies, ontologies, and syntaxes, and mappings to other related data standards are provided.
- Mapped to terms from other metadata standards initiatives, including:
 - Genomic Standards Consortium's minimal information (MIxS) checklists
 - NCBI's BioSample metadata
 - Ontology of Biomedical Investigations (OBI). Serve as common semantic framework
- Coordination with others?

NIAID GSC-BRC Meta-data Working Group


- Now beta testing a form for collection
 - Incentive is getting your sample sequenced
- Have a Clinical meta-data working group
 - Address additional details needed for patientbased data
 - Address privacy issues
 - work in progress (chaired by Jennifer Wortman, Chris Stoeckert)

Ontology of Biomedical Investigations (OBI) as unifying semantic framework


GSC-BRC Core Specimen	NCBI BioSample Specimen	EuPathDB Isolates	OBI/OBO Foundry ontology terms	
Specimen ID	sample name	Isolate ID	specimen identifier	
Suspected Organism(s) in Specimen	organism	Isolate Genus/Species	infectious agent	
Specimen Type	host-tissue-sampled	Host Material Isolated from	gross anatomical part	
Specimen Source Species	specific host	Host Species	organism	
Specimen Source Gender	host-sex	Sex	biological sex	
Specimen Source Age (Value, Unit)	host-age	Age	age measurement datum	
Specimen Source Health Status	host-disease	Host Status/Symptoms	diagnosis (OGMS)	
Environmental Material	isolation-source	Isolate Environmental Source	environmental material	
Specimen Collection Location (Location,Country, Latitude,Longitude)	geographic location (country and/or sea, region)	Geographic Location (Country,Region,County,City/Village/locality, latitude/longitudeCoordinates, Altitude)	geographical location	
Specimen Collection Location - Latitude		Latitude	latitude coordinate measurement datum	
Specimen Collection Location - Longitude		Longitude	longitude coordinate measurement datum	
Nucleic Acid Extraction Method			protocol is realized by nucleic acid extraction	
Sequencing Method			protocal is realized by sequencing assay	
		Sequence	sequence data	
GenBank Record ID		GenBank # Identical to sequence	GenBank ID	

Jie Zheng also using OBI as semantic framework for U Penn LIMS.

OBI is available at the NCBO Bioportal http://bioportal.bioontology.org/

Versions

VERSION	RELEASE DATE	UPLOAD DATE	DOWNLOADS
2012-07-01	07/16/2012	07/16/2012	Ontology
2012-03-29	03/30/2012	04/10/2012	Ontology
2011-12-13	01/27/2012	01/27/2012	Ontology
2011-07-20	07/20/2011	08/05/2011	Ontology
2011-04-20	04/20/2011	05/10/2011	Ontology
	<u> </u>		more

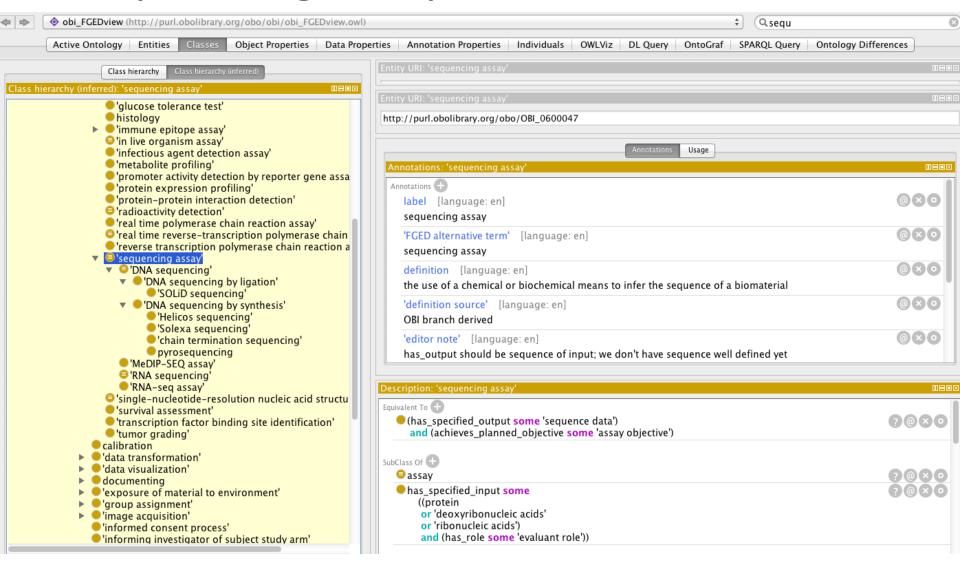
Views Create new view

Expand All | Collapse All

▼ FGED View

• Description: Subset of OBI terms of interest to the FGED Community.

Ontology ID: 2070


- Definition Language: Manual

VERSION	BASE VERSION	CREATED	CREATED BY	ONTOLOGY FILE	DIFF FILE	VISIBILITY
2011-12-13	2011-12-13	01/27/2012	Jie Zheng, jiezheng@pcbi.upenn.edu	Download View		<u>Public</u>
2	2011-07-20	10/04/2011	Jie Zheng, jiezheng@pcbi.upenn.edu	Download View		<u>Public</u>
1	2011-04-20	06/20/2011	Jie Zheng, jiezheng@pcbi.upenn.edu	Download View		<u>Public</u>

▶ IEDB View

→ OBI Device branch

Sequencing assay in FGED View of OBI

Reality check

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

http://imgs.xkcd.com/comics/standards.png

Recommendations

- What recommendations do you (or the community you represent) have for better ways to share genomic data and ensuring reproducible research?
 - Standards for accessing annotations and expression data to compare across species (get pile-ups or calls and protocols?)
 - Standards for accessing metadata for functional genomics datasets (SPARQL endpoints?)
- What challenges have you met and/or steps forward have you made with creating or using standards?
 - Core meta-data elements for NIAID GSC-BRCs
 - Coordinating with NCBI and potentially other groups
 - Ontology of Biomedical Investigations (OBI) as unifying semantic framework

Team Science

EuPathDB

- David Roos Jessie Kissinger
- Brian Brunk, Eileen Kraemer, Omar Harb, Steve Fischer, Cristina Aurrechio, John Brestelli, Mark Heiges, Debbie Pinney,
- Ana Barreto, JaShon Cade, RyanDoherty, Bindu Gajria, Xin Gao, Alan Gingle, Greg Grant, Sufen Hu, John Iodice, Wei Li, Brian Pitts, Ganesh Srinivasamoorthy, Haiming Wang, Susanne Warrenfeltz, Mariann Winkelmann

OBI

- OBI Consortium: http://obi-ontology.org/page/Main_Page
 - Jie Zheng
- NIAID GSC-BRC Meta-data Working Group
 - Richard Scheuermann
- NIAID, NIGMS, NHGRI, Bill & Melinda Gates Foundation